Search results for " enhanced weathering"
showing 3 items of 3 documents
Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering.
2022
Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental …
The role of hydrological processes on enhanced weathering for carbon sequestration in soils in tropical areas
2021
<p>To mitigate global warming, a noticeable research effort is being devoted to NCS (Natural Climate Solutions) as means to reduce greenhouse gas emissions or sequester carbon within the oceans or terrestrial environments by exploiting natural processes. Enhanced weathering<strong> </strong>is a NCS that aims to increase the weathering reaction rates of silicate minerals, by amending soils with crushed reactive minerals. Various studies have shown that this technique is favored by hot and humid climates (i.e., tropical ecosystems), since weathering reactions are mostly effective under high temperature and soil moisture. Despite olivine dissolution d…
The role of hydrology on enhanced weathering for carbon sequestration I. Modeling rock-dissolution reactions coupled to plant, soil moisture, and car…
2021
Abstract Enhanced Weathering (EW) resulting from soil amendment with highly reactive silicate minerals is regarded as one of the most effective techniques for carbon sequestration. While in laboratory conditions silicate minerals dissolution rates are well characterized, in field conditions the rate of the dissolution reaction is more difficult to predict, not least because it interacts with soil, plant, and hydrologic processes. Here we present a dynamic mass balance model connecting biogeochemical and ecohydrological dynamics to shed light on these intertwined processes involved in EW. We focus on the silicate mineral olivine, for its faster laboratory dissolution rate, and pay particular…